\qquad Block: \qquad

Topic: Graphing

Graphing Quadratics

4	In addition a 3.0, student will demonstrate the ability to analyze another person's work to identify and correct errors.
3	Transformations of graphs - Given graph, write the function. - Given a parent function and transformations, write a new function. Graph a polynomial - Use the zeros to construct a rough graph of the function defined by the polynomial. - Show end behavior Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation.
2	Identify transformations of graphs Identify domain graphically Identify range graphically Given the graph of a polynomial, identify the zeros. Represent complex numbers on the complex plane in rectangular form (including real and imaginary numbers).
1	Insufficient progress towards foundational skills and knowledge.

Line of Symmetry

Watch (and take notes) the lecture called Line of Symmetry.

1. Write the equation of the line of symmetry of each graph.

2. Find the line of symmetry of each equation.
a. $x^{2}+9 x+20=0$
b. $x^{2}-9=0$
c. $4 x^{2}+12 x-16=0$
d. $3 x^{2}+5 x-2=0$

Finding the Vertex

You Tube

 Watch (and take notes) the lecture called Vertex.3. What is the vertex of each graph?

\qquad Block: \qquad
4. Find the vertex of each equation.
a. $x^{2}+9 x+20=0$
b. $x^{2}-9=0$
c. $4 x^{2}+12 x-16=0$
d. $3 x^{2}+5 x-2=0$

X-Intercepts (zeros)

You
Watch (and take notes) the lecture called X-Intercepts.
5. Identify the x-intercepts (zeros) of each graph.

6. Find the x -intercepts (zeros) of each equation.
a. $x^{2}+9 x+20=0$
b. $x^{2}-9=0$
c. $4 x^{2}+12 x-16=0$
d. $3 x^{2}+5 x-2=0$

End Behavior

7. Sketch a graph with the correct end behavior.
a. $x^{2}+9 x+20=0$
b. $-x^{2}-9=0$
c. $4 x^{3}+12 x-16=0$
d. $-3 x^{3}+5 x-2=0$
\qquad Block: \qquad

Domain and Range

Watch (and take notes) the lecture called Domain and Range.
8. What is the domain and range of each graph?

Graphing Quadratics (putting it all together)

Watch (and take notes) the lecture called Graphing Quadratics.
Graph the quadratic
equations.
a. $y=x^{2}+6 x+8$

b. $y=-x^{2}+2 x+3$

\qquad
c. $y=x^{2}-4$
d. $y=-x^{2}+9$
e. $y=-2 x^{2}-18 x$
f. $y=2 x^{2}+4 x-6$

\qquad Block: \qquad

Thinking About End Behavior

10. Above, you learned about x-intercepts (zeros) and end behavior. The polynomials below are written in standard form and are factored for you. Sketch what the graph would look like of the polvnomials.
a. $x^{3}+4 x^{2}-x-4$

$$
(x+1)(x-1)(x+4)
$$

b. $-x^{3}+7 x-6$

$$
-(x-2)(x+3)(x-1)
$$

c. $x^{4}+5 x^{3}+5 x^{2}-5 x-6$

$$
(x+3)(x-1)(x+2)(x+1)
$$

