Write the name of each special quadrilateral in the images below.

Find the missing measurements of Square ABCD .
$\mathrm{AB}=12$
$\mathrm{BC}=$ \qquad
$\mathrm{CD}=$ \qquad DA = \qquad
$\mathrm{AC}=17$
DB = \qquad
$\mathrm{AE}=$ \qquad $\mathrm{BE}=$ \qquad
$\mathrm{CE}=$ \qquad $\mathrm{DE}=$ \qquad

$$
\begin{array}{lll}
\mathrm{m} \angle \mathrm{ABE}= & \mathrm{m} \angle \mathrm{EBC}= & \mathrm{m} \angle \mathrm{BCE}= \\
\mathrm{m} \angle \mathrm{CDE}= & \mathrm{m} \angle \mathrm{ECD}= \\
\mathrm{m} \angle \mathrm{AEB}= & \mathrm{m} \angle \mathrm{EDA}= & \mathrm{m} \angle \mathrm{DAE}= \\
\mathrm{m} \angle \mathrm{BEC}= & \mathrm{m} \angle \mathrm{EAB}= \\
\mathrm{m} \angle \mathrm{CED}= & \mathrm{m} \angle \mathrm{DEA}=
\end{array}
$$

Find the missing measurements of Rhombus ABCD .
$\mathrm{AB}=9.48$
$\mathrm{BC}=$ \qquad
$\mathrm{CD}=$ \qquad
$\mathrm{DA}=$ \qquad
$\mathrm{AC}=9$
$\mathrm{DB}=18$
$\mathrm{AE}=$ \qquad
$\mathrm{BE}=$ \qquad
$\mathrm{CE}=$ \qquad

$\mathrm{DE}=$ \qquad

$$
\begin{aligned}
& \mathrm{m}<\mathrm{ABE}= \\
& \mathrm{m}<\mathrm{EBC}= \\
& \mathrm{m}<\mathrm{BCE}= \\
& \mathrm{m}<\mathrm{ECD}= \\
& \mathrm{m}<\mathrm{CDE}= \\
& \mathrm{m}<E D A= \\
& \mathrm{m}<\text { DAE }= \\
& \mathrm{m} \angle \mathrm{EAB}=63^{\circ} \\
& \mathrm{m}<\mathrm{AEB}= \\
& \mathrm{m}<\mathrm{BEC}= \\
& \mathrm{m}<\mathrm{CED}= \\
& \mathrm{m}<\text { DEA }=
\end{aligned}
$$

The following pictures look like rectangles. DO NOT ASSUME THIS. Use the angle measures as noted on each picture.
Find the values of x, y and z if each quadrilateral is a parallelogram.

$$
\begin{aligned}
& \mathrm{x}= \\
& \mathrm{y}= \\
& \mathrm{z}= \\
&
\end{aligned}
$$

$\mathrm{x}=$ \qquad
$\mathrm{y}=$ \qquad
Z $=$ \qquad

116°	x	z
	y	

$$
\begin{aligned}
& \mathrm{x}= \\
& \mathrm{y}= \\
& \mathrm{z}= \\
& \hline
\end{aligned}
$$

