Topic: Polynomials

Remainder Theorem

4	In addition a 3.0, demonstrate in-depth inferences & applications that go beyond the learning goal.
3	☐ Solve quadratic equations in one variable by factoring
	Determine if a given binomial is a factor of a polynomial; if so, completely factor the polynomial
2	☐ Recognize or recall specific vocabulary such as: monic, roots, end behavior
	☐ Factoring – showing expressions in different representations
	■ Non-monic
	■ Factor by grouping
	Find the remainder using
	■ The Remainder Theorem
	 Divide polynomials
1	Student performance reflects insufficient progress towards foundational skills and knowledge.

Determine if the given binomial is a factor of the given polynomial. Show your work. (Choose 4 problems to complete. Do the rest for more practice).

1.
$$(x^3 - x^2 - x - 2) \div (x - 2)$$

5.
$$(x^4 - 8x^3 + 10x^2 + 2x + 4) \div (x - 2)$$

2
$$(x^4 - 8x^3 - x^2 + 62x - 34) \div (x - 7)$$

2.
$$(x^4 - 8x^3 - x^2 + 62x - 34) \div (x - 7)$$
 6. $(x^4 - 25x^3 - 7x^2 - 37x - 18) \div (x + 5)$

$$(x^4 + 9x^3 + 14x^2 + 50x + 9) \div (x + 8)$$

3.
$$(x^4 + 9x^3 + 14x^2 + 50x + 9) \div (x + 8)$$
 7. $(x^5 + 6x^4 - 3x^2 - 22x - 29) \div (x + 6)$

4.
$$(x^4 + 6x^3 + 11x^2 + 29x - 13) \div (x + 5)$$

8. $(x^4 + 10x^3 + 21x^2 + 6x - 8) \div (x + 2)$

8.
$$(x^4 + 10x^3 + 21x^2 + 6x - 8) \div (x + 2)$$